Finding the tenth derivative
$begingroup$
I came across this Question where i have to find $$f^{(10)}$$ for the following function at $x = 0$
$$f(x) = e^xsin x$$
I tried differentiating a few times to get a pattern but didn’t get one, can someone provide the solution.
calculus functional-analysis
$endgroup$
add a comment |
$begingroup$
I came across this Question where i have to find $$f^{(10)}$$ for the following function at $x = 0$
$$f(x) = e^xsin x$$
I tried differentiating a few times to get a pattern but didn’t get one, can someone provide the solution.
calculus functional-analysis
$endgroup$
add a comment |
$begingroup$
I came across this Question where i have to find $$f^{(10)}$$ for the following function at $x = 0$
$$f(x) = e^xsin x$$
I tried differentiating a few times to get a pattern but didn’t get one, can someone provide the solution.
calculus functional-analysis
$endgroup$
I came across this Question where i have to find $$f^{(10)}$$ for the following function at $x = 0$
$$f(x) = e^xsin x$$
I tried differentiating a few times to get a pattern but didn’t get one, can someone provide the solution.
calculus functional-analysis
calculus functional-analysis
edited 1 hour ago
Bernard
119k639112
119k639112
asked 1 hour ago
user601297user601297
1797
1797
add a comment |
add a comment |
7 Answers
7
active
oldest
votes
$begingroup$
Hint:
$$f(x)=e^xsin x$$
$$f'(x)=e^x(sin x +cos x)$$
$$f''(x)=e^x(sin x+cos x)+e^x(cos x -sin x)=2e^x(cos x)$$
$$f'''(x)=e^x(2cos x)-e^x(2sin x)=2e^x(cos x-sin x)$$
$$f^{iv}(x)=2e^x(cos x-sin x)-2e^x(cos x+sin x)=-4e^x(sin x)=-4f(x)$$
$endgroup$
add a comment |
$begingroup$
Hint:
As $;mathrm e^xsin x=operatorname{Im}bigl(mathrm e^{(1+i)x}bigr)$, you have to find first the real and imaginary parts of $(1+i)^{10}$.
$endgroup$
1
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
add a comment |
$begingroup$
Use Leibniz' Rule for higher derivatives of a product:
$$frac{d^n}{dx^n}(uv)
=frac{d^nu}{dx^n}v+binom n1frac{d^{n-1}u}{dx^{n-1}}frac{dv}{dx}
+binom n2frac{d^{n-2}u}{dx^{n-2}}frac{d^2v}{dx^2}+cdots+ufrac{d^nv}{dx^n} .$$
In your case take $u=e^x$ and $v=sin x$. Since you are going to substitute $x=0$ after differentiating, all the $e^x$ terms will be $1$, all the $sin x$ terms will be $0$ and all the cos $x$ terms will be $1$ (though some of them will pick up a negative sign when you differentiate). So the answer is
$$eqalign{0+binom{10}11&{}+binom{10}20+binom{10}3(-1)+binom{10}40+binom{10}51cr
&qquad{}+binom{10}60+binom{10}7(-1)+binom{10}80+binom{10}91+binom{10}{10}0cr
&=10-120+252-120+10cr
&=32 .cr}$$
$endgroup$
add a comment |
$begingroup$
$$(e^x(acos x+bsin x))'=e^x(acos x+bsin x)+e^x(bcos x-asin x)=e^x((a+b)cos x+(b-a)sin x).$$
So
$$(0,1)to(1,1)to(2,0)to(2,-2)to(0,-4)to(-4,-4)to(-8,0)to(-8,8)to(0,16)to(16,16)to(32,0).$$
If you divide by increasing powers of $2$, in pairs, the pattern emerges, with period $8$:
$$(0,1)to(1,1)to(1,0)to(1,-1)to(0,-1)to(-1,-1)to(-1,0)to(-1,1)to(0,1)to(1,1)to(1,0).$$
$endgroup$
add a comment |
$begingroup$
One trick here is to use $e^{ix}=cos x+isin x$ and define $g(x)=e^xcos x$ then $f(x)$ and $g(x)$ are both real functions.
Let $h(x)=g(x)+if(x)=e^{(1+i)x}$ then the tenth derivative of $h(x)$ is $(1+i)^{10}h(x)$ and the tenth derivative of $f(x)$ is the imaginary part of this.
Because you only want the value at $x=0$ you can evaluate there, with $h(0)=g(0)+if(0)$
$endgroup$
add a comment |
$begingroup$
Use the formula $(fg)^{(n)}= sumlimits_{k=0}^{n} binom {n} {k} (f)^{(k)}(g)^{(n-k)}$.
$endgroup$
add a comment |
$begingroup$
I get $f^{10}(x)=32e^xcos x$.
Here's what I did:
$f'(x)=e^x(sin x+cos x)implies f''(x)=2e^xcos ximplies f^3(x)=2e^x(cos x-sin x)implies f^4(x)=2e^x(-2sin x)=-4f(x)implies f^5(x)=-4f'(x)implies f^8(x)=-4f^4(x)=16f(x)implies f^{10}(x)=16f''(x)$.
$endgroup$
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077641%2ffinding-the-tenth-derivative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
7 Answers
7
active
oldest
votes
7 Answers
7
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
$$f(x)=e^xsin x$$
$$f'(x)=e^x(sin x +cos x)$$
$$f''(x)=e^x(sin x+cos x)+e^x(cos x -sin x)=2e^x(cos x)$$
$$f'''(x)=e^x(2cos x)-e^x(2sin x)=2e^x(cos x-sin x)$$
$$f^{iv}(x)=2e^x(cos x-sin x)-2e^x(cos x+sin x)=-4e^x(sin x)=-4f(x)$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$f(x)=e^xsin x$$
$$f'(x)=e^x(sin x +cos x)$$
$$f''(x)=e^x(sin x+cos x)+e^x(cos x -sin x)=2e^x(cos x)$$
$$f'''(x)=e^x(2cos x)-e^x(2sin x)=2e^x(cos x-sin x)$$
$$f^{iv}(x)=2e^x(cos x-sin x)-2e^x(cos x+sin x)=-4e^x(sin x)=-4f(x)$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$f(x)=e^xsin x$$
$$f'(x)=e^x(sin x +cos x)$$
$$f''(x)=e^x(sin x+cos x)+e^x(cos x -sin x)=2e^x(cos x)$$
$$f'''(x)=e^x(2cos x)-e^x(2sin x)=2e^x(cos x-sin x)$$
$$f^{iv}(x)=2e^x(cos x-sin x)-2e^x(cos x+sin x)=-4e^x(sin x)=-4f(x)$$
$endgroup$
Hint:
$$f(x)=e^xsin x$$
$$f'(x)=e^x(sin x +cos x)$$
$$f''(x)=e^x(sin x+cos x)+e^x(cos x -sin x)=2e^x(cos x)$$
$$f'''(x)=e^x(2cos x)-e^x(2sin x)=2e^x(cos x-sin x)$$
$$f^{iv}(x)=2e^x(cos x-sin x)-2e^x(cos x+sin x)=-4e^x(sin x)=-4f(x)$$
answered 1 hour ago
Rhys HughesRhys Hughes
5,2591427
5,2591427
add a comment |
add a comment |
$begingroup$
Hint:
As $;mathrm e^xsin x=operatorname{Im}bigl(mathrm e^{(1+i)x}bigr)$, you have to find first the real and imaginary parts of $(1+i)^{10}$.
$endgroup$
1
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
add a comment |
$begingroup$
Hint:
As $;mathrm e^xsin x=operatorname{Im}bigl(mathrm e^{(1+i)x}bigr)$, you have to find first the real and imaginary parts of $(1+i)^{10}$.
$endgroup$
1
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
add a comment |
$begingroup$
Hint:
As $;mathrm e^xsin x=operatorname{Im}bigl(mathrm e^{(1+i)x}bigr)$, you have to find first the real and imaginary parts of $(1+i)^{10}$.
$endgroup$
Hint:
As $;mathrm e^xsin x=operatorname{Im}bigl(mathrm e^{(1+i)x}bigr)$, you have to find first the real and imaginary parts of $(1+i)^{10}$.
answered 1 hour ago
BernardBernard
119k639112
119k639112
1
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
add a comment |
1
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
1
1
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
$begingroup$
This is by far the most efficient solution.
$endgroup$
– Yves Daoust
49 mins ago
add a comment |
$begingroup$
Use Leibniz' Rule for higher derivatives of a product:
$$frac{d^n}{dx^n}(uv)
=frac{d^nu}{dx^n}v+binom n1frac{d^{n-1}u}{dx^{n-1}}frac{dv}{dx}
+binom n2frac{d^{n-2}u}{dx^{n-2}}frac{d^2v}{dx^2}+cdots+ufrac{d^nv}{dx^n} .$$
In your case take $u=e^x$ and $v=sin x$. Since you are going to substitute $x=0$ after differentiating, all the $e^x$ terms will be $1$, all the $sin x$ terms will be $0$ and all the cos $x$ terms will be $1$ (though some of them will pick up a negative sign when you differentiate). So the answer is
$$eqalign{0+binom{10}11&{}+binom{10}20+binom{10}3(-1)+binom{10}40+binom{10}51cr
&qquad{}+binom{10}60+binom{10}7(-1)+binom{10}80+binom{10}91+binom{10}{10}0cr
&=10-120+252-120+10cr
&=32 .cr}$$
$endgroup$
add a comment |
$begingroup$
Use Leibniz' Rule for higher derivatives of a product:
$$frac{d^n}{dx^n}(uv)
=frac{d^nu}{dx^n}v+binom n1frac{d^{n-1}u}{dx^{n-1}}frac{dv}{dx}
+binom n2frac{d^{n-2}u}{dx^{n-2}}frac{d^2v}{dx^2}+cdots+ufrac{d^nv}{dx^n} .$$
In your case take $u=e^x$ and $v=sin x$. Since you are going to substitute $x=0$ after differentiating, all the $e^x$ terms will be $1$, all the $sin x$ terms will be $0$ and all the cos $x$ terms will be $1$ (though some of them will pick up a negative sign when you differentiate). So the answer is
$$eqalign{0+binom{10}11&{}+binom{10}20+binom{10}3(-1)+binom{10}40+binom{10}51cr
&qquad{}+binom{10}60+binom{10}7(-1)+binom{10}80+binom{10}91+binom{10}{10}0cr
&=10-120+252-120+10cr
&=32 .cr}$$
$endgroup$
add a comment |
$begingroup$
Use Leibniz' Rule for higher derivatives of a product:
$$frac{d^n}{dx^n}(uv)
=frac{d^nu}{dx^n}v+binom n1frac{d^{n-1}u}{dx^{n-1}}frac{dv}{dx}
+binom n2frac{d^{n-2}u}{dx^{n-2}}frac{d^2v}{dx^2}+cdots+ufrac{d^nv}{dx^n} .$$
In your case take $u=e^x$ and $v=sin x$. Since you are going to substitute $x=0$ after differentiating, all the $e^x$ terms will be $1$, all the $sin x$ terms will be $0$ and all the cos $x$ terms will be $1$ (though some of them will pick up a negative sign when you differentiate). So the answer is
$$eqalign{0+binom{10}11&{}+binom{10}20+binom{10}3(-1)+binom{10}40+binom{10}51cr
&qquad{}+binom{10}60+binom{10}7(-1)+binom{10}80+binom{10}91+binom{10}{10}0cr
&=10-120+252-120+10cr
&=32 .cr}$$
$endgroup$
Use Leibniz' Rule for higher derivatives of a product:
$$frac{d^n}{dx^n}(uv)
=frac{d^nu}{dx^n}v+binom n1frac{d^{n-1}u}{dx^{n-1}}frac{dv}{dx}
+binom n2frac{d^{n-2}u}{dx^{n-2}}frac{d^2v}{dx^2}+cdots+ufrac{d^nv}{dx^n} .$$
In your case take $u=e^x$ and $v=sin x$. Since you are going to substitute $x=0$ after differentiating, all the $e^x$ terms will be $1$, all the $sin x$ terms will be $0$ and all the cos $x$ terms will be $1$ (though some of them will pick up a negative sign when you differentiate). So the answer is
$$eqalign{0+binom{10}11&{}+binom{10}20+binom{10}3(-1)+binom{10}40+binom{10}51cr
&qquad{}+binom{10}60+binom{10}7(-1)+binom{10}80+binom{10}91+binom{10}{10}0cr
&=10-120+252-120+10cr
&=32 .cr}$$
answered 59 mins ago
DavidDavid
68k664126
68k664126
add a comment |
add a comment |
$begingroup$
$$(e^x(acos x+bsin x))'=e^x(acos x+bsin x)+e^x(bcos x-asin x)=e^x((a+b)cos x+(b-a)sin x).$$
So
$$(0,1)to(1,1)to(2,0)to(2,-2)to(0,-4)to(-4,-4)to(-8,0)to(-8,8)to(0,16)to(16,16)to(32,0).$$
If you divide by increasing powers of $2$, in pairs, the pattern emerges, with period $8$:
$$(0,1)to(1,1)to(1,0)to(1,-1)to(0,-1)to(-1,-1)to(-1,0)to(-1,1)to(0,1)to(1,1)to(1,0).$$
$endgroup$
add a comment |
$begingroup$
$$(e^x(acos x+bsin x))'=e^x(acos x+bsin x)+e^x(bcos x-asin x)=e^x((a+b)cos x+(b-a)sin x).$$
So
$$(0,1)to(1,1)to(2,0)to(2,-2)to(0,-4)to(-4,-4)to(-8,0)to(-8,8)to(0,16)to(16,16)to(32,0).$$
If you divide by increasing powers of $2$, in pairs, the pattern emerges, with period $8$:
$$(0,1)to(1,1)to(1,0)to(1,-1)to(0,-1)to(-1,-1)to(-1,0)to(-1,1)to(0,1)to(1,1)to(1,0).$$
$endgroup$
add a comment |
$begingroup$
$$(e^x(acos x+bsin x))'=e^x(acos x+bsin x)+e^x(bcos x-asin x)=e^x((a+b)cos x+(b-a)sin x).$$
So
$$(0,1)to(1,1)to(2,0)to(2,-2)to(0,-4)to(-4,-4)to(-8,0)to(-8,8)to(0,16)to(16,16)to(32,0).$$
If you divide by increasing powers of $2$, in pairs, the pattern emerges, with period $8$:
$$(0,1)to(1,1)to(1,0)to(1,-1)to(0,-1)to(-1,-1)to(-1,0)to(-1,1)to(0,1)to(1,1)to(1,0).$$
$endgroup$
$$(e^x(acos x+bsin x))'=e^x(acos x+bsin x)+e^x(bcos x-asin x)=e^x((a+b)cos x+(b-a)sin x).$$
So
$$(0,1)to(1,1)to(2,0)to(2,-2)to(0,-4)to(-4,-4)to(-8,0)to(-8,8)to(0,16)to(16,16)to(32,0).$$
If you divide by increasing powers of $2$, in pairs, the pattern emerges, with period $8$:
$$(0,1)to(1,1)to(1,0)to(1,-1)to(0,-1)to(-1,-1)to(-1,0)to(-1,1)to(0,1)to(1,1)to(1,0).$$
edited 50 mins ago
answered 55 mins ago
Yves DaoustYves Daoust
125k671222
125k671222
add a comment |
add a comment |
$begingroup$
One trick here is to use $e^{ix}=cos x+isin x$ and define $g(x)=e^xcos x$ then $f(x)$ and $g(x)$ are both real functions.
Let $h(x)=g(x)+if(x)=e^{(1+i)x}$ then the tenth derivative of $h(x)$ is $(1+i)^{10}h(x)$ and the tenth derivative of $f(x)$ is the imaginary part of this.
Because you only want the value at $x=0$ you can evaluate there, with $h(0)=g(0)+if(0)$
$endgroup$
add a comment |
$begingroup$
One trick here is to use $e^{ix}=cos x+isin x$ and define $g(x)=e^xcos x$ then $f(x)$ and $g(x)$ are both real functions.
Let $h(x)=g(x)+if(x)=e^{(1+i)x}$ then the tenth derivative of $h(x)$ is $(1+i)^{10}h(x)$ and the tenth derivative of $f(x)$ is the imaginary part of this.
Because you only want the value at $x=0$ you can evaluate there, with $h(0)=g(0)+if(0)$
$endgroup$
add a comment |
$begingroup$
One trick here is to use $e^{ix}=cos x+isin x$ and define $g(x)=e^xcos x$ then $f(x)$ and $g(x)$ are both real functions.
Let $h(x)=g(x)+if(x)=e^{(1+i)x}$ then the tenth derivative of $h(x)$ is $(1+i)^{10}h(x)$ and the tenth derivative of $f(x)$ is the imaginary part of this.
Because you only want the value at $x=0$ you can evaluate there, with $h(0)=g(0)+if(0)$
$endgroup$
One trick here is to use $e^{ix}=cos x+isin x$ and define $g(x)=e^xcos x$ then $f(x)$ and $g(x)$ are both real functions.
Let $h(x)=g(x)+if(x)=e^{(1+i)x}$ then the tenth derivative of $h(x)$ is $(1+i)^{10}h(x)$ and the tenth derivative of $f(x)$ is the imaginary part of this.
Because you only want the value at $x=0$ you can evaluate there, with $h(0)=g(0)+if(0)$
answered 1 hour ago
Mark BennetMark Bennet
80.8k981179
80.8k981179
add a comment |
add a comment |
$begingroup$
Use the formula $(fg)^{(n)}= sumlimits_{k=0}^{n} binom {n} {k} (f)^{(k)}(g)^{(n-k)}$.
$endgroup$
add a comment |
$begingroup$
Use the formula $(fg)^{(n)}= sumlimits_{k=0}^{n} binom {n} {k} (f)^{(k)}(g)^{(n-k)}$.
$endgroup$
add a comment |
$begingroup$
Use the formula $(fg)^{(n)}= sumlimits_{k=0}^{n} binom {n} {k} (f)^{(k)}(g)^{(n-k)}$.
$endgroup$
Use the formula $(fg)^{(n)}= sumlimits_{k=0}^{n} binom {n} {k} (f)^{(k)}(g)^{(n-k)}$.
answered 1 hour ago
Kavi Rama MurthyKavi Rama Murthy
53.9k32055
53.9k32055
add a comment |
add a comment |
$begingroup$
I get $f^{10}(x)=32e^xcos x$.
Here's what I did:
$f'(x)=e^x(sin x+cos x)implies f''(x)=2e^xcos ximplies f^3(x)=2e^x(cos x-sin x)implies f^4(x)=2e^x(-2sin x)=-4f(x)implies f^5(x)=-4f'(x)implies f^8(x)=-4f^4(x)=16f(x)implies f^{10}(x)=16f''(x)$.
$endgroup$
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
add a comment |
$begingroup$
I get $f^{10}(x)=32e^xcos x$.
Here's what I did:
$f'(x)=e^x(sin x+cos x)implies f''(x)=2e^xcos ximplies f^3(x)=2e^x(cos x-sin x)implies f^4(x)=2e^x(-2sin x)=-4f(x)implies f^5(x)=-4f'(x)implies f^8(x)=-4f^4(x)=16f(x)implies f^{10}(x)=16f''(x)$.
$endgroup$
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
add a comment |
$begingroup$
I get $f^{10}(x)=32e^xcos x$.
Here's what I did:
$f'(x)=e^x(sin x+cos x)implies f''(x)=2e^xcos ximplies f^3(x)=2e^x(cos x-sin x)implies f^4(x)=2e^x(-2sin x)=-4f(x)implies f^5(x)=-4f'(x)implies f^8(x)=-4f^4(x)=16f(x)implies f^{10}(x)=16f''(x)$.
$endgroup$
I get $f^{10}(x)=32e^xcos x$.
Here's what I did:
$f'(x)=e^x(sin x+cos x)implies f''(x)=2e^xcos ximplies f^3(x)=2e^x(cos x-sin x)implies f^4(x)=2e^x(-2sin x)=-4f(x)implies f^5(x)=-4f'(x)implies f^8(x)=-4f^4(x)=16f(x)implies f^{10}(x)=16f''(x)$.
edited 36 mins ago
answered 43 mins ago
Chris CusterChris Custer
11.2k3824
11.2k3824
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
add a comment |
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Your calculation for $f^{(4)}$ is wrong. Looks like you missed a product rule.
$endgroup$
– AlexanderJ93
42 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
Be careful: $$(e^x(g(x))'=e^xg(x)+e^xg'(x)$$ You missed the first bit in your calculation for $f^4$
$endgroup$
– Rhys Hughes
39 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
$begingroup$
@RhysHughes &Alexander J93 thanks
$endgroup$
– Chris Custer
34 mins ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3077641%2ffinding-the-tenth-derivative%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown