evaluate the integral by using Cauchy's residue theorem












2












$begingroup$


evalulate the integral by using Cauchy's residue theorem



$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$



MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$



so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$



Is it correct?



Any hints/solution



thanks u










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
    $endgroup$
    – Arthur
    21 hours ago








  • 1




    $begingroup$
    You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
    $endgroup$
    – Paras Khosla
    21 hours ago
















2












$begingroup$


evalulate the integral by using Cauchy's residue theorem



$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$



MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$



so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$



Is it correct?



Any hints/solution



thanks u










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
    $endgroup$
    – Arthur
    21 hours ago








  • 1




    $begingroup$
    You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
    $endgroup$
    – Paras Khosla
    21 hours ago














2












2








2





$begingroup$


evalulate the integral by using Cauchy's residue theorem



$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$



MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$



so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$



Is it correct?



Any hints/solution



thanks u










share|cite|improve this question











$endgroup$




evalulate the integral by using Cauchy's residue theorem



$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$



MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$



so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$



Is it correct?



Any hints/solution



thanks u







complex-analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 20 hours ago









Bernard

121k740116




121k740116










asked 21 hours ago









jasminejasmine

1,781417




1,781417








  • 2




    $begingroup$
    Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
    $endgroup$
    – Arthur
    21 hours ago








  • 1




    $begingroup$
    You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
    $endgroup$
    – Paras Khosla
    21 hours ago














  • 2




    $begingroup$
    Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
    $endgroup$
    – Arthur
    21 hours ago








  • 1




    $begingroup$
    You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
    $endgroup$
    – Paras Khosla
    21 hours ago








2




2




$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago






$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago






1




1




$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago




$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence



$Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives



$int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    How do you know it has no other poles?
    $endgroup$
    – José Carlos Santos
    20 hours ago










  • $begingroup$
    @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
    $endgroup$
    – Fred
    20 hours ago






  • 1




    $begingroup$
    I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
    $endgroup$
    – José Carlos Santos
    20 hours ago



















2












$begingroup$

Hint:



$$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117291%2fevaluate-the-integral-by-using-cauchys-residue-theorem%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence



    $Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives



    $int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      How do you know it has no other poles?
      $endgroup$
      – José Carlos Santos
      20 hours ago










    • $begingroup$
      @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
      $endgroup$
      – Fred
      20 hours ago






    • 1




      $begingroup$
      I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
      $endgroup$
      – José Carlos Santos
      20 hours ago
















    4












    $begingroup$

    The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence



    $Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives



    $int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$






    share|cite|improve this answer









    $endgroup$













    • $begingroup$
      How do you know it has no other poles?
      $endgroup$
      – José Carlos Santos
      20 hours ago










    • $begingroup$
      @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
      $endgroup$
      – Fred
      20 hours ago






    • 1




      $begingroup$
      I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
      $endgroup$
      – José Carlos Santos
      20 hours ago














    4












    4








    4





    $begingroup$

    The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence



    $Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives



    $int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$






    share|cite|improve this answer









    $endgroup$



    The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence



    $Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives



    $int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 21 hours ago









    FredFred

    46.9k1848




    46.9k1848












    • $begingroup$
      How do you know it has no other poles?
      $endgroup$
      – José Carlos Santos
      20 hours ago










    • $begingroup$
      @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
      $endgroup$
      – Fred
      20 hours ago






    • 1




      $begingroup$
      I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
      $endgroup$
      – José Carlos Santos
      20 hours ago


















    • $begingroup$
      How do you know it has no other poles?
      $endgroup$
      – José Carlos Santos
      20 hours ago










    • $begingroup$
      @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
      $endgroup$
      – Fred
      20 hours ago






    • 1




      $begingroup$
      I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
      $endgroup$
      – José Carlos Santos
      20 hours ago
















    $begingroup$
    How do you know it has no other poles?
    $endgroup$
    – José Carlos Santos
    20 hours ago




    $begingroup$
    How do you know it has no other poles?
    $endgroup$
    – José Carlos Santos
    20 hours ago












    $begingroup$
    @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
    $endgroup$
    – Fred
    20 hours ago




    $begingroup$
    @ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
    $endgroup$
    – Fred
    20 hours ago




    1




    1




    $begingroup$
    I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
    $endgroup$
    – José Carlos Santos
    20 hours ago




    $begingroup$
    I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
    $endgroup$
    – José Carlos Santos
    20 hours ago











    2












    $begingroup$

    Hint:



    $$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$






    share|cite|improve this answer









    $endgroup$


















      2












      $begingroup$

      Hint:



      $$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$






      share|cite|improve this answer









      $endgroup$
















        2












        2








        2





        $begingroup$

        Hint:



        $$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$






        share|cite|improve this answer









        $endgroup$



        Hint:



        $$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 21 hours ago









        Paras KhoslaParas Khosla

        679213




        679213






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117291%2fevaluate-the-integral-by-using-cauchys-residue-theorem%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Polycentropodidae

            Magento 2 Error message: Invalid state change requested

            Paulmy