Calculating an infinite sum: $sumlimits_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
New contributor
$endgroup$
add a comment |
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
New contributor
$endgroup$
add a comment |
$begingroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
New contributor
$endgroup$
I need to calculate the following formula
$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$
I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.
calculus sequences-and-series power-series
calculus sequences-and-series power-series
New contributor
New contributor
edited 1 min ago
Martin Sleziak
44.7k9117272
44.7k9117272
New contributor
asked 1 hour ago
Laina YabLaina Yab
243
243
New contributor
New contributor
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$A=?,B=?$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078252%2fcalculating-an-infinite-sum-sum-limits-n-1-infty-2-frac3n-1nn-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
add a comment |
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
add a comment |
$begingroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
$endgroup$
You may proceed as follows:
- $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$
- $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$
$Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.- $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$
- $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$
answered 1 hour ago
trancelocationtrancelocation
9,7901722
9,7901722
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
add a comment |
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
1
1
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
$begingroup$
I couldn't resist saying this is very elegant
$endgroup$
– roman
39 mins ago
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$A=?,B=?$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$endgroup$
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$A=?,B=?$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$endgroup$
add a comment |
$begingroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$A=?,B=?$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
$endgroup$
Hint:
Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$
$A=?,B=?$
Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$
answered 1 hour ago
lab bhattacharjeelab bhattacharjee
224k15156274
224k15156274
add a comment |
add a comment |
Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.
Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.
Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.
Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078252%2fcalculating-an-infinite-sum-sum-limits-n-1-infty-2-frac3n-1nn-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown