Calculating an infinite sum: $sumlimits_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$












3












$begingroup$


I need to calculate the following formula



$$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.










share|cite|improve this question









New contributor




Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    3












    $begingroup$


    I need to calculate the following formula



    $$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



    I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.










    share|cite|improve this question









    New contributor




    Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      3












      3








      3


      1



      $begingroup$


      I need to calculate the following formula



      $$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



      I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.










      share|cite|improve this question









      New contributor




      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      I need to calculate the following formula



      $$sum_{n=1}^{infty} 2frac{3^{n-1}n(n-1)}{(n+2)(n+1)!}$$



      I know that this sum should be finite, but I don't know how to calculate it. I've done some simplifications and reductions but it get me nowhere. Please help me to calculate it.







      calculus sequences-and-series power-series






      share|cite|improve this question









      New contributor




      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 1 min ago









      Martin Sleziak

      44.7k9117272




      44.7k9117272






      New contributor




      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 1 hour ago









      Laina YabLaina Yab

      243




      243




      New contributor




      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Laina Yab is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          You may proceed as follows:




          • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

          • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


          • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

          • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

          • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






          share|cite|improve this answer









          $endgroup$









          • 1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            39 mins ago



















          3












          $begingroup$

          Hint:



          Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



          $A=?,B=?$



          Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078252%2fcalculating-an-infinite-sum-sum-limits-n-1-infty-2-frac3n-1nn-1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            You may proceed as follows:




            • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

            • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


            • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

            • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

            • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              I couldn't resist saying this is very elegant
              $endgroup$
              – roman
              39 mins ago
















            4












            $begingroup$

            You may proceed as follows:




            • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

            • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


            • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

            • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

            • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






            share|cite|improve this answer









            $endgroup$









            • 1




              $begingroup$
              I couldn't resist saying this is very elegant
              $endgroup$
              – roman
              39 mins ago














            4












            4








            4





            $begingroup$

            You may proceed as follows:




            • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

            • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


            • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

            • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

            • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$






            share|cite|improve this answer









            $endgroup$



            You may proceed as follows:




            • $e^x = sum_{n=0}^{infty}frac{x^n}{n!} Rightarrow e^x -(1+x+frac{x^2}{2}) = sum_{color{blue}{n=3}}^{infty} frac{x^n}{n!} = sum_{color{blue}{n=1}}^{infty} frac{x^{n+2}}{(n+2)!}$

            • $Rightarrow f(x) = frac{e^x -(1+x+frac{x^2}{2})}{x^2} = sum_{n=1}^{infty} frac{x^{n}}{(n+2)!}$


            • $Rightarrow 2xf''(x) = boxed{2sum_{n=1}^{infty} frac{x^{n-1}n(n-1)}{(n+2)!}}$. This is your sum for $x=3$.

            • $Rightarrow 2xf''(x) = 2x frac{e^x(x^2-4x+6)-2(x+3)}{x^4}= 2frac{e^x(x^2-4x+6)-2(x+3)}{x^3}$

            • $x= 3 Rightarrow boxed{2sum_{n=1}^{infty} frac{3^{n-1}n(n-1)}{(n+2)!} =frac{2}{9}(e^3-4)}$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 1 hour ago









            trancelocationtrancelocation

            9,7901722




            9,7901722








            • 1




              $begingroup$
              I couldn't resist saying this is very elegant
              $endgroup$
              – roman
              39 mins ago














            • 1




              $begingroup$
              I couldn't resist saying this is very elegant
              $endgroup$
              – roman
              39 mins ago








            1




            1




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            39 mins ago




            $begingroup$
            I couldn't resist saying this is very elegant
            $endgroup$
            – roman
            39 mins ago











            3












            $begingroup$

            Hint:



            Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



            $A=?,B=?$



            Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$






            share|cite|improve this answer









            $endgroup$


















              3












              $begingroup$

              Hint:



              Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



              $A=?,B=?$



              Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$






              share|cite|improve this answer









              $endgroup$
















                3












                3








                3





                $begingroup$

                Hint:



                Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



                $A=?,B=?$



                Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$






                share|cite|improve this answer









                $endgroup$



                Hint:



                Write $n(n-1)=(n+2)(n+1)+A(n+2)+B$



                $A=?,B=?$



                Use $sum_{r=0}^inftydfrac{y^r}{r!}=e^y$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                lab bhattacharjeelab bhattacharjee

                224k15156274




                224k15156274






















                    Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.













                    Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.












                    Laina Yab is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078252%2fcalculating-an-infinite-sum-sum-limits-n-1-infty-2-frac3n-1nn-1%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Magento 2 controller redirect on button click in phtml file

                    Polycentropodidae