Are there any other shorter expressions for 8 by manipulating exactly 4 4?
$begingroup$
The label $4times 4 -4 -4$ for 8 seems to be too long. I am looking for other shorter ones while maintaining the constraint of only using four 4.
Are there such expressions?
integer-partitions
$endgroup$
add a comment |
$begingroup$
The label $4times 4 -4 -4$ for 8 seems to be too long. I am looking for other shorter ones while maintaining the constraint of only using four 4.
Are there such expressions?
integer-partitions
$endgroup$
2
$begingroup$
What about $(4+4)cdotfrac{4}{4}$? :-D
$endgroup$
– trancelocation
16 mins ago
$begingroup$
@trancelocation : nice thanks!
$endgroup$
– Artificial Stupidity
15 mins ago
$begingroup$
Another one $4cdotsqrt[4]{4cdot 4}$.
$endgroup$
– trancelocation
12 mins ago
add a comment |
$begingroup$
The label $4times 4 -4 -4$ for 8 seems to be too long. I am looking for other shorter ones while maintaining the constraint of only using four 4.
Are there such expressions?
integer-partitions
$endgroup$
The label $4times 4 -4 -4$ for 8 seems to be too long. I am looking for other shorter ones while maintaining the constraint of only using four 4.
Are there such expressions?
integer-partitions
integer-partitions
asked 20 mins ago
Artificial StupidityArtificial Stupidity
353110
353110
2
$begingroup$
What about $(4+4)cdotfrac{4}{4}$? :-D
$endgroup$
– trancelocation
16 mins ago
$begingroup$
@trancelocation : nice thanks!
$endgroup$
– Artificial Stupidity
15 mins ago
$begingroup$
Another one $4cdotsqrt[4]{4cdot 4}$.
$endgroup$
– trancelocation
12 mins ago
add a comment |
2
$begingroup$
What about $(4+4)cdotfrac{4}{4}$? :-D
$endgroup$
– trancelocation
16 mins ago
$begingroup$
@trancelocation : nice thanks!
$endgroup$
– Artificial Stupidity
15 mins ago
$begingroup$
Another one $4cdotsqrt[4]{4cdot 4}$.
$endgroup$
– trancelocation
12 mins ago
2
2
$begingroup$
What about $(4+4)cdotfrac{4}{4}$? :-D
$endgroup$
– trancelocation
16 mins ago
$begingroup$
What about $(4+4)cdotfrac{4}{4}$? :-D
$endgroup$
– trancelocation
16 mins ago
$begingroup$
@trancelocation : nice thanks!
$endgroup$
– Artificial Stupidity
15 mins ago
$begingroup$
@trancelocation : nice thanks!
$endgroup$
– Artificial Stupidity
15 mins ago
$begingroup$
Another one $4cdotsqrt[4]{4cdot 4}$.
$endgroup$
– trancelocation
12 mins ago
$begingroup$
Another one $4cdotsqrt[4]{4cdot 4}$.
$endgroup$
– trancelocation
12 mins ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Here is one: $frac{4times4}4+4=8$
Here is another one: $frac{4!}{4-frac44}=8$
$endgroup$
add a comment |
$begingroup$
Here my ones: :-)
- $(4+4)cdotfrac{4}{4}$
- $4cdot sqrt[4]{4cdot 4}$
$endgroup$
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
add a comment |
$begingroup$
We have $8=4+4^{4/4}$, which plays nicely with your existing $4=4+4^{4-4}$.
Edit: Or $8=4+log_4 4^4=log_4 4^{4+4}$, if you want to bring in a new ingredient.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089195%2fare-there-any-other-shorter-expressions-for-8-by-manipulating-exactly-4-4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here is one: $frac{4times4}4+4=8$
Here is another one: $frac{4!}{4-frac44}=8$
$endgroup$
add a comment |
$begingroup$
Here is one: $frac{4times4}4+4=8$
Here is another one: $frac{4!}{4-frac44}=8$
$endgroup$
add a comment |
$begingroup$
Here is one: $frac{4times4}4+4=8$
Here is another one: $frac{4!}{4-frac44}=8$
$endgroup$
Here is one: $frac{4times4}4+4=8$
Here is another one: $frac{4!}{4-frac44}=8$
answered 15 mins ago
abc...abc...
2,307531
2,307531
add a comment |
add a comment |
$begingroup$
Here my ones: :-)
- $(4+4)cdotfrac{4}{4}$
- $4cdot sqrt[4]{4cdot 4}$
$endgroup$
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
add a comment |
$begingroup$
Here my ones: :-)
- $(4+4)cdotfrac{4}{4}$
- $4cdot sqrt[4]{4cdot 4}$
$endgroup$
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
add a comment |
$begingroup$
Here my ones: :-)
- $(4+4)cdotfrac{4}{4}$
- $4cdot sqrt[4]{4cdot 4}$
$endgroup$
Here my ones: :-)
- $(4+4)cdotfrac{4}{4}$
- $4cdot sqrt[4]{4cdot 4}$
answered 11 mins ago
trancelocationtrancelocation
10.5k1722
10.5k1722
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
add a comment |
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
$begingroup$
The first one probably looks more consistent with the others if written as $4 times frac{4+4}{4}$.
$endgroup$
– Misha Lavrov
6 mins ago
add a comment |
$begingroup$
We have $8=4+4^{4/4}$, which plays nicely with your existing $4=4+4^{4-4}$.
Edit: Or $8=4+log_4 4^4=log_4 4^{4+4}$, if you want to bring in a new ingredient.
$endgroup$
add a comment |
$begingroup$
We have $8=4+4^{4/4}$, which plays nicely with your existing $4=4+4^{4-4}$.
Edit: Or $8=4+log_4 4^4=log_4 4^{4+4}$, if you want to bring in a new ingredient.
$endgroup$
add a comment |
$begingroup$
We have $8=4+4^{4/4}$, which plays nicely with your existing $4=4+4^{4-4}$.
Edit: Or $8=4+log_4 4^4=log_4 4^{4+4}$, if you want to bring in a new ingredient.
$endgroup$
We have $8=4+4^{4/4}$, which plays nicely with your existing $4=4+4^{4-4}$.
Edit: Or $8=4+log_4 4^4=log_4 4^{4+4}$, if you want to bring in a new ingredient.
answered 11 mins ago
Chris CulterChris Culter
20.3k43584
20.3k43584
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089195%2fare-there-any-other-shorter-expressions-for-8-by-manipulating-exactly-4-4%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
What about $(4+4)cdotfrac{4}{4}$? :-D
$endgroup$
– trancelocation
16 mins ago
$begingroup$
@trancelocation : nice thanks!
$endgroup$
– Artificial Stupidity
15 mins ago
$begingroup$
Another one $4cdotsqrt[4]{4cdot 4}$.
$endgroup$
– trancelocation
12 mins ago