evaluate the integral by using Cauchy's residue theorem
$begingroup$
evalulate the integral by using Cauchy's residue theorem
$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$
MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$
so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$
Is it correct?
Any hints/solution
thanks u
complex-analysis
$endgroup$
add a comment |
$begingroup$
evalulate the integral by using Cauchy's residue theorem
$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$
MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$
so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$
Is it correct?
Any hints/solution
thanks u
complex-analysis
$endgroup$
2
$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago
1
$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago
add a comment |
$begingroup$
evalulate the integral by using Cauchy's residue theorem
$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$
MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$
so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$
Is it correct?
Any hints/solution
thanks u
complex-analysis
$endgroup$
evalulate the integral by using Cauchy's residue theorem
$$int_{|z|=1} frac{1}{e^z -1-2z}dz$$
MY attempt : $ f(z) =frac{1}{e^z -1-2z}$, now put $z= 1$ we get $f(z)=-1$
so $$int_{|z|=1} frac{1}{e^z -1-2z}dz= -2pi i$$
Is it correct?
Any hints/solution
thanks u
complex-analysis
complex-analysis
edited 20 hours ago
Bernard
121k740116
121k740116
asked 21 hours ago
jasminejasmine
1,781417
1,781417
2
$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago
1
$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago
add a comment |
2
$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago
1
$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago
2
2
$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago
$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago
1
1
$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago
$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence
$Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives
$int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$
$endgroup$
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
1
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
add a comment |
$begingroup$
Hint:
$$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117291%2fevaluate-the-integral-by-using-cauchys-residue-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence
$Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives
$int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$
$endgroup$
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
1
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
add a comment |
$begingroup$
The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence
$Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives
$int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$
$endgroup$
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
1
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
add a comment |
$begingroup$
The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence
$Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives
$int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$
$endgroup$
The function $f(z) =frac{1}{e^z -1-2z}$ has a pole of order $1$ in $z=0.$ Hence
$Res(f;0)= lim_{z to 0}z f(z)=-1.$ This gives
$int_{|z|=1} frac{1}{e^z -1-2z}dz= 2 pi i Res(f;0)=-2 pi i.$
answered 21 hours ago
FredFred
46.9k1848
46.9k1848
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
1
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
add a comment |
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
1
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
How do you know it has no other poles?
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
$begingroup$
@ Jose: do you agree that $e^z-1-2z ne 0$ if $|z|=1$ ? If yes, then there is $ delta >0$ such that $e^z-1-2z ne 0$ if $0< |z|<1+ delta$. Now aply the residue theorem in the region ${z: |z|<1+ delta}.$
$endgroup$
– Fred
20 hours ago
1
1
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
$begingroup$
I agree that $lvert zrvert=1implies e^z-1-2zneq0$, yes, but I don't see how is it that you deduce from that that $e^z-1-2zneq0$ in a region $D(0,1+delta)setminus{0}$, for some $delta>0$.
$endgroup$
– José Carlos Santos
20 hours ago
add a comment |
$begingroup$
Hint:
$$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$
$endgroup$
add a comment |
$begingroup$
Hint:
$$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$
$endgroup$
Hint:
$$int_{mid zmid=1}dfrac{mathrm dz}{e^z-1-2z}=2pi icdot text{Res}_{z=0}$$
answered 21 hours ago
Paras KhoslaParas Khosla
679213
679213
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3117291%2fevaluate-the-integral-by-using-cauchys-residue-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
var $window = $(window),
onScroll = function(e) {
var $elem = $('.new-login-left'),
docViewTop = $window.scrollTop(),
docViewBottom = docViewTop + $window.height(),
elemTop = $elem.offset().top,
elemBottom = elemTop + $elem.height();
if ((docViewTop elemBottom)) {
StackExchange.using('gps', function() { StackExchange.gps.track('embedded_signup_form.view', { location: 'question_page' }); });
$window.unbind('scroll', onScroll);
}
};
$window.on('scroll', onScroll);
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Residue is not as simple as "the value at $z=1$". For instance, $frac1z^2$ has zero residue.
$endgroup$
– Arthur
21 hours ago
1
$begingroup$
You're supposed to calculate the residue at $z=0$, that's where the function has a pole and $z=0$ lies inside $mid zmid=1$.
$endgroup$
– Paras Khosla
21 hours ago